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Categorization allows organisms to generalize existing knowledge to novel stimuli and to discriminate between physically similar yet
conceptually different stimuli. Humans, nonhuman primates, and rodents can readily learn arbitrary categories defined by low-level
visual features, and learning distorts perceptual sensitivity for category-defining features such that differences between physically
similar yet categorically distinct exemplars are enhanced, whereas differences between equally similar but categorically identical stimuli
are reduced. We report a possible basis for these distortions in human occipitoparietal cortex. In three experiments, we used an inverted
encoding model to recover population-level representations of stimuli from multivoxel and multielectrode patterns of human brain
activity while human participants (both sexes) classified continuous stimulus sets into discrete groups. In each experiment, recon-
structed representations of to-be-categorized stimuli were systematically biased toward the center of the appropriate category. These
biases were largest for exemplars near a category boundary, predicted participants’ overt category judgments, emerged shortly after
stimulus onset, and could not be explained by mechanisms of response selection or motor preparation. Collectively, our findings suggest

that category learning can influence processing at the earliest stages of cortical visual processing.
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ignificance Statement

Category learning enhances perceptual sensitivity for physically similar yet categorically different stimuli. We report a possible
mechanism for these changes in human occipitoparietal cortex. In three experiments, we used an inverted encoding model to
recover population-level representations of stimuli from multivariate patterns in occipitoparietal cortex while participants cate-
gorized sets of continuous stimuli into discrete groups. The recovered representations were systematically biased by category
membership, with larger biases for exemplars adjacent to a category boundary. These results suggest that mechanisms of catego-
rization shape information processing at the earliest stages of the visual system.
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Introduction

Categorization refers to the process of mapping continuous sen-
sory inputs onto discrete and behaviorally relevant concepts. It is
a cornerstone of flexible behavior that allows organisms to gen-
eralize existing knowledge to novel stimuli and to discriminate
between physically similar, yet conceptually different, stimuli.
Many real-world categories are defined by a combination of low-
level visual properties, such as hue, luminance, spatial frequency,
and orientation. For example, a forager might be tasked with
determining whether a food source is edible based on subtle vari-
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ations in color, shape, size, and texture. Humans and other
animals can readily learn arbitrary novel categories defined by
low-level visual properties (Goldstone, 1998; Ashby and Mad-
dox, 2005), and such learning “distorts” perceptual sensitivity for
category-defining features such that discrimination performance
for physically similar yet categorically different stimuli is in-
creased (i.e., acquired distinctiveness) (Goldstone, 1994; Newell
and Biilthoff, 2002) and discrimination performance for stimuli
from the same category reduced (i.e., acquired similarity) (Liv-
ingston et al., 1998).

Invasive electrophysiological studies suggest that single-unit
responses in early visual areas index the physical properties of a
stimulus but not its category membership, whereas single-unit
responses in later areas index the category membership of a stim-
ulus regardless of its physical properties (Freedman et al., 2001;
e.g., Sigala and Logothetis, 2002; Freedman and Assad, 2006).
These results have been taken as evidence that category-selective
responses are a de novo property of higher-order visual areas.
However, perceptual distortions following category learning
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could also reflect subtle changes in how to-be-categorized infor-
mation is represented by sensory neural populations (Folstein et
al., 2013; Davis and Poldrack, 2014). Here we provide a test of
this possibility. In three experiments, we trained human partic-
ipants (both sexes) to classify sets of continuous stimuli into
discrete groups. Next, we applied multivariate models to nonin-
vasive measurements of human brain activity (fMRI and EEG)
from visual and parietal cortical areas while participants catego-
rized the same stimulus sets. This allowed us to recover, visu-
alize, and quantify stimulus-specific representations of to-be-
categorized exemplars. In Experiment 1 (fMRI), we show that
reconstructed representations of to-be-categorized orientations
in visual areas V1-V3 are systematically biased toward the center
of the category to which they belong. These biases were correlated
with trial-by-trial variability in overt category judgments and
were largest for orientations adjacent to the category boundary
where they would be most beneficial for discrimination perfor-
mance. In Experiment 2, we used EEG to generate time-resolved
representations of to-be-categorized orientations and show that
categorical biases manifest shortly after stimulus onset (=300
ms). In Experiment 3, we used EEG and a delayed match-to-
category (DMC) task to show that categorical biases observed in
Experiments 1 and 2 cannot be explained by response biases or
motor preparation. Collectively, our findings suggest that mech-
anisms of categorization can shape information processing at the
earliest stages of the visual system.

Materials and Methods

General overview

Participants. A total of 44 human volunteers (both sexes) participated in
this study. Eight participants completed Experiment 1 (fMRI), 28 partic-
ipants completed Experiment 2 (EEG), and 8 participants completed
Experiment 3 (EEG). Experiments 1 and 2 were performed at the Uni-
versity of California, San Diego, while Experiment 3 was performed at
Florida Atlantic University. Participants were recruited from the student
body at each university. All study procedures were approved by local
institutional review boards, and all participants gave both written and
oral informed consent. Participants self-reported normal or corrected-
to-normal visual acuity and were remunerated with cash incentives
($20/h for fMRI and $15/h for EEG).

Stimulus displays. Stimulus displays were generated in MATLAB and
rendered using Psychophysics Toolbox software extensions (Kleiner et
al., 2007). During Experiment 1 (fMRI), displays were projected onto a
110-cm-wide screen placed at the base of the MRI table, and participants
viewed displays via a mirror attached to the MR head coil from a distance
of 370 cm. During Experiments 2 and 3, displays were projected onto a
19-inch CRT monitor cycling at 120 Hz (Experiment 2) or 85 Hz (Ex-
periment 3). Participants were seated ~65 cm from the display (head
position was not constrained).

Experiment 1: fMRI
Participants. Eight neurologically intact human volunteers (AA, AB, AC,
AD, AE, AF, AG, and AH; 6 females) completed Experiment 1. Each
participant completed a single 1 h behavioral training session ~24-72 h
before scanning. Seven participants (AA, AB, AC, AD, AE, AF, AG) com-
pleted two 2 h experimental scan sessions; an eighth participant (AH)
completed a single 2 h experimental scan session. Participants AA, AB,
AC, AD, AE, AF, and AH also completed a single 2 h retinotopic mapping
scan session. Data from this session were used to identify visual field
borders in early visual cortical areas V1-hV4/V3A and subregions of
posterior intraparietal sulcus (IPSO—3; see Retinotopic mapping).
Behavioral tasks. In separate runs (where “run” refers to a continuous
block of 30 trials lasting 280 s), participants performed either an orien-
tation mapping task or a category discrimination task. Trials in each task
lasted 3 s, and consecutive trials were separated by a 5 or 7 s intertrial
interval (pseudorandomly chosen on each trial). During the orientation
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mapping task, participants attended a stream of letters presented at fix-
ation (subtending 1.0° X 1.0° from a viewing distance of 370 cm) while
ignoring a task-irrelevant phase-reversing (15 Hz) square-wave grating
(0.8 cycles/deg with inner and outer radii of 1.16° and 4.58°, respectively)
presented in the periphery. On each trial, the grating was assigned 1 of 15
possible orientations (0°-168° in 12° increments). Participants were in-
structed to detect and report the identity of a target (“X” or “Y”) in the
letter stream using an MR-compatible button box. Only one target was
presented on each trial. Letters were presented at a rate of 10 Hz (50%
duty cycle, i.e., 50 ms on, 50 ms off), and targets could occur during any
cycle from 750 to 2250 ms after stimulus onset. During category discrim-
ination runs, participants were shown displays containing a circular ap-
erture (inner and outer radii of 1.16° and 4.58° from a viewing distance of
370 cm) filled with 150 iso-oriented bars (see Fig. 1A). Each bar subten-
ded 0.2° X 0.6° with a stroke width of 8 pixels (1024 X 768 display
resolution). Each bar flickered at 30 Hz and was randomly replotted
within the aperture at the beginning of each “up” cycle.

On each trial, all bars were assigned an orientation from 0° to 168° in
12° increments. Inspired by earlier work in nonhuman primates (Freed-
man and Assad, 2006), we randomly selected and designated one of these
orientations as a category boundary such that the seven orientations
counterclockwise to this value were assigned membership in Category 1,
whereas the seven orientations clockwise to this value were assigned
membership in Category 2. Participants were not informed that the cat-
egory boundary was chosen from the set of possible stimulus orienta-
tions. Participants reported whether the orientation shown on each trial
was a member of Category 1 or 2 (via an MR-compatible button box).
Participants were free to respond at any point during the trial, although
the stimulus was always presented for a total of 3000 ms. Each participant
was familiarized and trained to criterion performance on the category
discrimination task during a 1 h behavioral testing session completed 1-3
d before his or her first scan session. Written feedback (“Correct!” or
“Incorrect”) was presented in the center of the display for 1.25 s after each
trial during behavioral training and MR scanning. Across either 1 (N =
1) or 2 (N = 7) scan sessions, each participant completed 7 (N = 1), 13
(N=1),14(N=1),15(N = 1), or 16 (N = 4) runs of the orientation
mapping and category discrimination tasks.

fMRI acquisition and preprocessing. Imaging data were acquired with a
3.0T GE MR 750 scanner located at the Center for Functional Magnetic
Resonance imaging on the University of California, San Diego campus.
All images were acquired with a 32 channel Nova Medical head coil.
Whole-brain EPIs were acquired in 35 3 mm slices (no gap) with an
in-plane resolution of 3 X 3 mm (192 X 192 mm FOV, 64 X 64 mm
image matrix, 90° flip angle, 2000 ms TR, 30 ms TE). During retinotopic
mapping scans (see below), EPIs were acquired in 31 3-mm-thick
oblique slices (no gap) positioned over posterior visual and parietal cor-
tex with an in-plane resolution of 2 X 2 mm (192 X 192 mm FOV, 96 X
96 mm image matrix, 90° flip angle, 2250 ms TR, 30 ms TE). EPIs were
coregistered to a high-resolution anatomical image collected during the
same session (FSPGR T1-weighted sequence, 11 ms TR, 3.3 ms TE, 1100
ms TI, 172 slices, 18° flip angle, 1 mm > resolution), unwarped (FSL
software extensions), slice-time-corrected, motion-corrected, high-pass-
filtered (to remove first-, second-, and third-order drift), transformed to
Talairach space, and normalized (z score) on a scan-by-scan basis. Data
from data from scan sessions were then coregistered to a high-resolution
anatomical image (FSPGR T1-weighted sequences; parameters as de-
scribed above) collected during the retinotopic mapping session.

Retinotopic mapping. Retinotopically organized visual areas V1-hV4v/
V3A were defined using data from a single retinotopic mapping run
collected during each experimental scan session. Participants fixated a
small dot at fixation while phase-reversing (8 Hz) checkerboard wedges
subtending 60° of polar angle (at maximum eccentricity) were presented
along the horizontal or vertical meridian (alternating with a period of
40 s; i.e., 20 s of horizontal stimulation followed by 20 s of vertical stim-
ulation). To identify visual field borders, we constructed a GLM with two
boxcar regressors: one marking epochs of vertical stimulation and an-
other marking epochs of horizontal stimulation. Each regressor was con-
volved with a canonical hemodynamic function (“double gamma” as
implemented in BrainVoyager QX). Next, we generated a statistical para-
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metric map marking voxels with larger responses during epochs of ver-
tical relative to horizontal stimulation. This map was projected onto a
computationally inflated representation of each participant’s cortical
surface for visualization to aid in the definition of the borders of visual
areas V1, V2v, V2d, V3v, V3d, hV4v, and V3A. Data from V2v and V2d
were combined into a single V2 ROI, and data from V3v and V3d were
combined into a single V3 ROI. ROIs were also combined across cortical
hemispheres (e.g., left and right V1) as no asymmetries were observed
and the stimulus was presented in the center of the visual field.

Seven participants (AA, AB, AC, AD, AE, AF, and AH) completed a
separate 2 h retinotopic mapping scan; data from this session were used
to identify retinotopically organized regions of IPS0—3. During each task
run, participants were shown displays containing a rotating wedge stim-
ulus (period 24.75 or 36 s) that subtended 72° of polar angle with inner
and outer radii of 1.75° and 8.75°, respectively. In alternating blocks, the
wedge contained a 4 Hz phase-reversing checkerboard or field of moving
dots, and participants were required to detect small, brief, and temporally
unpredictable changes in checkerboard contrast or dot speed. Six partic-
ipants completed between 8 and 14 task runs. To compute the best polar
angle for each voxel in IPS, we shifted the signals from counterclockwise
runs by twice the estimated HRF delay (2 X 6.75 s = 13.5 s), removed
data from the first and last full stimulus cycle, and reversed the time series
so that all runs reflected clockwise rotation. We next computed the power
and phase of the response at the stimulus’ period (either 1/24.75 or 1/36
Hz) and subtracted the estimated HRF delay (6.75 s) to align the signal
phase in each voxel with the stimulus’ location. Maps of orientation
preference (computed via cross-correlation) were projected onto a com-
putationally inflated representation of each participant’s gray-white
matter boundary to aide in the identification of visual field borders sep-
arating IPS0-3. An eighth participant (AG) chose not to participate in an
additional retinotopic mapping session. For this participant, we esti-
mated visual field borders for visual areas V1-hV4/V3A using data from
the retinotopic mapping run collected during the participant’s sole ex-
perimental session. We did not attempt to define IPS regions IPS0—3 for
this participant.

Decoding categorical biases in visual cortex. We used a linear decoder to
examine whether fMRI activation patterns evoked by exemplars adjacent
to the category boundary and at the center of each category were more
similar during the category discrimination task relative to the orientation
mapping task (i.e., acquired similarity). In the first phase of the analysis,
we trained a linear support vector machine (LIBSVM implementation)
(Changand Lin, 2011) to discriminate between the oriented exemplars at
the center of each category (48° from the boundary) using data from the
orientation mapping and category discrimination tasks. To ensure inter-
nal reliability, we implemented a “leave-one-run-out” cross validation
scheme where data from all but one scanning run were used to train the
classifier and data from the remaining scanning run were used for vali-
dation. This procedure was repeated until data from each scan had served
as the validation set, and the results were averaged across permutations.
Next, we trained a second classifier on activation patterns evoked by
exemplars at the center of each category boundary and used the trained
classifier to predict the category membership of exemplars adjacent to
the category boundary. If category learning increases the similarity of
activation patterns evoked by exemplars within the same category, then
within-category decoding performance should be superior during the
category discrimination task relative to the orientation mapping task.

Inverted encoding model of orientation selectivity. A linear inverted en-
coding model was used to recover a model-based representation of stim-
ulus orientation from multivoxel activation patterns measured in early
visual areas (Brouwer and Heeger, 2011). The same general approach was
used during Experiments 1 (fMRI) and 2 (EEG). Specifically, we modeled
the responses of voxels (electrodes) measured during the orientation
mapping task as a weighted sum of 15 orientation-selective channels,
each with an idealized response function (half-wave-rectified sinusoid
raised to the 14th power). The maximum response of each channel was
set to unit amplitude; thus, units of response are arbitrary. Let B, (m
voxels or electrodes X #, trials) be the response of each voxel (electrode)
during each trial of the RSVP task, let C, (k filters X n, trials) be a matrix
of hypothetical orientation filters, and let W (m voxels or electrodes X k
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filters) be a weight matrix describing the mapping between B, and C, as
follows:

B, = WC,

In the first phase of the analysis, we computed the weight matrix W from
the voxelwise (electrodewise) responses in B, via ordinary least squares as
follows:

W= BlclT(ClclT)_]

Next, we defined a test dataset B, (m voxels or electrodes X n, trials)
using data from the category discrimination task. Given W and B,, a
matrix of filter responses C, (k filters X # trials) can be estimated via
model inversion as follows:

C, = (W'W) 'W'B,

C, contains the reconstructed response of each modeled orientation
channel (the channel response function [CRF]) on each trial of the cat-
egory discrimination task. This analysis can be considered a form of
model-based, directed dimensionality reduction where activity patterns
are transformed from their original measurement space (fMRI voxels;
EEG electrodes) into a modeled information space (orientation-selective
channels). Importantly, results from this method cannot be used to infer
any changes in orientation tuning, or any properties of neural responses,
occurring at the single-neuron level, and only assay the information
content of large-scale patterns of neural activity (Sprague et al., 2018).
Additionally, while it is the case that arbitrary linear transforms can be
applied to the basis set, model weights, and reconstructed CRF (Gardner
and Liu, 2019), results are uniquely defined for a given model specifica-
tion (Sprague et al., 2018). Trial-by-trial CRFs were multiplied by the
original basis set to recover a full 180° function, circularly shifted to a
common center (0°), and sorted by category membership so that any
category bias would manifest as a clockwise shift (i.e., toward the center
of Category 2).

Quantification of bias in orientation representations. To quantify cate-
gorical biases in reconstructed model-based CRFs, these functions were
fit with an exponentiated cosine function of the following form:

f(x) — a(ek(cos(p.—x)—l)) 4 B

where x is a vector of channel responses and «, 3, k, and u correspond to
the amplitude (i.e., signal over baseline), baseline, concentration (the
inverse of bandwidth), and the center of the function, respectively. Fit-
ting was performed using a multidimensional nonlinear minimization
algorithm (Nelder-Mead).

Category biases in the estimated center of each construction (u) dur-
ing the category discrimination task were quantified via permutation
tests. For a given visual area (e.g., V1), we randomly selected (with re-
placement) stimulus reconstructions from 8 of 8 participants. Specifi-
cally, we computed a “mean” reconstruction by randomly selecting (with
replacement) and averaging reconstructions from all participants. The
mean reconstruction was fit with the cosine function described above,
yielding point estimates of «, 3, k, and . This procedure was repeated
1000 times, yielding 1000 element distributions of parameter estimates.
We then computed the proportion of permutations where a u value <0
to obtain an empirical p value for categorical shifts in reconstructed
representations.

Searchlight decoding of category membership. We used a roving search-
light analysis (Ester etal., 2015) to identify cortical regions beyond V1-V3
that contained category-specific information. We defined a spherical
neighborhood with a radius of 8 mm around each gray matter voxel in
the cortical sheet. We next extracted and averaged the normalized re-
sponse of each voxel in each neighborhood over a period from 4 to 8 s
after stimulus onset (this interval was chosen to account for typical he-
modynamic lag of 4—6 s). A linear support vector machine (LIBSVM
implementation) was used to classify stimulus category using activation
patterns within each neighborhood. To classify category membership, we
designated the three orientations immediately counterclockwise to the
category boundary (see Fig. 1) as members of Category 1 and the three
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orientations immediately clockwise of the boundary as members of Cat-
egory 2. We then trained our classifier to discriminate between categories
using data from all but one task run. The trained classifier was then used
to predict category membership from activation patterns measured dur-
ing the held-out task run. This procedure was repeated until each task
run had been held out, and the results were averaged across permuta-
tions. Finally, we repeated the same analysis using the three Category 1
and Category 2 orientations adjacent to the second (orthogonal) cate-
gory boundary (see Fig. 1) and averaged the results across category
boundaries.

We identified neighborhoods encoding stimulus category using a
leave-one-participant-out cross validation approach (Esterman et al.,
2010). Specifically, for each participant (e.g., AA), we randomly selected
(with replacement) and averaged classifier performance estimates from
each neighborhood from each of the remaining 7 volunteers (e.g., AB-
AH). This procedure was repeated 1000 times, yielding a set of 1000
classifier performance estimates for each neighborhood. We generated a
statistical parametric map for the held-out participant that indexed
neighborhoods where classifier performance was greater than chance
(50%) on 97.5% of permutations (false-discovery-rate corrected for
multiple comparisons across neighborhoods). Finally, we projected each
participant’s statistical parametric map onto a computationally inflated
representation of his or her gray-white matter boundary and used Brain
Voyager’s “Create POIs from Map Clusters” function with an area
threshold of 25 mm? to identify ROIs supporting above-chance category
classification performance. Because of differences in cortical folding pat-
terns, some ROIs could not be unambiguously identified in all 8 partic-
ipants. Therefore, across participants, we retained all ROIs that were
shared by at least 7 of 8 participants. Finally, we extracted multivoxel
activation patterns from each ROI and computed model-based recon-
structions of CRFs during the RSVP and category tasks using a leave-one-
run-out cross-validation approach. Specifically, we used data from all
but one task run to estimate a set of orientation weights for each voxel in
each ROI. We then used these weights and activation patterns measured
during the held-out task run to estimate a CRF, which contains a repre-
sentation of stimulus orientation. This procedure was repeated until each
task run had been held out, and the results were averaged across permu-
tations. Each participant’s ROIs were defined using data from the
remaining 7 participants. This ensured that participant-level reconstruc-
tions were statistically independent of the searchlight method used to
define ROIs encoding category information.

Within-participant error bars. We report estimates of within-participant
variability (e.g., =1 SEM) throughout the paper. These estimates discard
subject variance (e.g., overall differences in BOLD response amplitude)
and instead reflect variance related to the subject by condition(s) inter-
action term(s) (i.e., variability in estimated channel responses). We used
the approach described by Cousineau (2005): raw data (e.g., channel
response estimates) were de-meaned on a participant-by-participant ba-
sis, and the grand mean across participants was added to each partici-
pant’s zero-centered data. The grand mean-centered data were then used
to compute estimates of SE.

Experiment 2: EEG

Participants. Twenty-nine new volunteers recruited from the University
of California, San Diego community completed Experiment 2. All par-
ticipants self-reported normal or corrected-to-normal visual acuity and
gave both written and oral informed consent as required by the local
Institutional Review Board. Each participant was tested in a single 2.5-3 h
experimental session (the exact duration varied across participants de-
pending on the amount of time needed to set up and calibrate the EEG
equipment). Unlike Experiment 1, participants were not trained on the
categorization task before testing. We adopted this approach in the hopes
of tracking the gradual emergence of categorical biases during learning.
However, many participants learned the task relatively quickly (within
40-60 trials), leaving too few trials to enable a direct analysis of this
possibility. Data from 1 participant were discarded due to a high number
of EOG artifacts (>35% of trials); the data reported here reflect the
remaining 28 participants.

Ester et al. @ Categorical Biases in Human Occipitoparietal Cortex

Behavioral tasks. In separate runs (where “run” refers to a continuous
block of 60 trials lasting ~6.5 min), participants performed orientation
mapping and category discrimination tasks similar to those used in Ex-
periment 1. During both tasks, a rapid series of letters (subtending 1.14° X
1.14° from a viewing distance of 55 cm) was presented at fixation, and an
aperture of 150 iso-oriented bars (subtending 0.5° X 1.2°) was presented
in the periphery. The aperture of bars had inner and outer radii of 1.96°
and 9.13°, respectively. On each trial, the bars were assigned 1 of 15
possible orientations (again 0°-168° in 12° increments) and flickered at a
rate of 30 Hz. Each bar was randomly replotted within the aperture at the
beginning of each “up” cycle. Letters in the RSVP stream were presented
at a rate of 6.67 Hz.

During orientation mapping runs, participants detected and reported
the presence of a target letter (an X or Y) that appeared at an unpredict-
able time during the interval from 750 to 2250 ms following stimulus
onset. Responses were made on a USB-compatible number pad. During
category discrimination runs, participants ignored the RSVP stream and
instead reported whether the orientation of the bar aperture was an ex-
emplar from Category 1 or Category 2. As in Experiment 1, we randomly
designated 1 of the 15 possible stimulus orientations as the category
boundary such that the seven orientations counterclockwise to this value
were assigned to Category 1 and the seven orientations clockwise to this
value were assigned to Category 2. Participants could respond at any
point during the trial, but the stimulus was presented for a total of 3000
ms. Trials were separated by a 2.5, 3.25 s intertrial interval (randomly
selected from a uniform distribution on each trial). Each participant
completed 4 (N=1),5 (N =10),6 (N=28),7 (N=28),0or8 (N=1)
blocks of the category task and 3 (N =1),4 (N=1),5(N=15),6 (N =
12),7 (N = 8), or 8 (N = 1) blocks of the orientation mapping task.

EEG acquisition and preprocessing. Participants were seated in a dimly
lit, sound-attenuated, and electrically shielded recording chamber (ETS-
Lindgren) for the duration of the experiment. Continuous EEG was re-
corded from 128 Ag-AgCl ~ scalp electrodes via a Biosemi “Active Two”
system. The horizontal EOG was recorded from additional electrodes
placed near the left and right canthi, and the vertical EOG was recorded
from electrodes placed above and below the right eye. Additional elec-
trodes were placed over the left and right mastoids. The horizontal and
vertical EOGs were recorded from electrodes placed over the left and
right canthi and above and below the right eye, respectively. Electrode
impedances were kept well below 20 k(), and recordings were digitized at
1024 Hz.

After testing, the entire EEG time series at each electrode was high- and
low-pass filtered (third-order zero-phase forward and reverse Butter-
worth) at 0.1 and 50 Hz and rereferenced to the average of the left and
right mastoids. Data from both tasks were epoched into intervals span-
ning —1000 to 4000 ms from stimulus onset; the relatively large pre-
stimulus and poststimulus epochs were included to absorb filtering
artifacts that could affect later analyses. Trials contaminated by EOG
artifacts (horizontal eye movements >2° and blinks) were identified and
excluded from additional analyses. Across participants an average of
5.58% (*=1.67%) and 8.74% (£1.84%) of trials from the orientation
mapping and category discrimination tasks were discarded, respectively.
Finally, noisy channels (those with multiple deflections =100 wV over
the course of the experiment) were visually identified and eliminated
(mean number of removed electrodes across participants £1 SEM:
2.25 = 0.64).

Next, we identified a set of electrodes of interest with strong responses
at the stimulus’ flicker frequency (30 Hz). Data from each task were
re-epoched into intervals spanning 0 to 3000 ms around stimulus onset
and averaged across trials and tasks (i.e., RSVP and category discrimina-
tion), yielding a k electrode by t sample data matrix. We computed the
evoked power at the stimulus’ flicker frequency (30 Hz) by applying a
discrete Fourier transform to the average time series at each electrode and
selected the 32 electrodes with the highest evoked power at the stimulus’
flicker frequency for further analysis. These electrodes were typically
distributed over occipitoparietal electrode sites (see Fig. 12).

To isolate stimulus-specific responses, the epoched time series at each
electrode was resampled to 256 Hz and then bandpass filtered from 29 to
31 Hz (zero-phase forward and reverse third-order Butterworth). We
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next estimated a set of complex Fourier coefficients describing the power
and phase of the 30 Hz response by applying a Hilbert transformation to
the filtered data. To visualize and quantify orientation-selective signals
from frequency-specific responses, we first constructed a complex valued
dataset B, () (m electrodes X n,,,;, trials). We then estimated a complex
valued weight matrix W(¢) (m channels X k filters) using B, (¢) and a basis
set of idealized orientation-selective filters C,. Finally, we estimated a
complex valued matrix of channel responses C,(¢) (m channels X n,,,
trials) given W(t) and complex valued test dataset B,(t) (m electrodes X
N, trials) containing the complex Fourier coefficients measured during
the category discrimination task. Trial-by-trial and sample-by-sample
response functions were shifted in the same manner described above so
that category biases would manifest as a rightward (clockwise) shift to-
ward the center of Category 2. We estimated the evoked (i.e., phase-
locked) power of the response at each filter by computing the squared
absolute value of the average complex valued coefficient for each filter
after shifting. Categorical biases were quantified using the same curve
fitting analysis described in the main text.

To obtain an unbiased estimate of orientation selectivity in each elec-
trode, we ensured that the training dataset B, () contained an equal
number of trials for each stimulus orientation (0°-168° in 12° incre-
ments). For each participant, we identified the stimulus orientation 6
with the N fewest repetitions in the orientation mapping dataset after
EOG artifact removal. Next, we constructed the training dataset B, () by
randomly selecting (without replacement) 1:N trials for each stimulus
orientation. Data from this training set were used to estimate a set of
orientation weights for each electrode, and these weights were in turn
used to estimate a response for each hypothetical orientation channel
during the category discrimination task. To ensure that our method
generalized across multiple combinations of orientation mapping trials,
we repeated this analysis 100 times and averaged the results across per-
mutations.

Experiment 3: EEG

Participants. Eight volunteers recruited from the Florida Atlantic Univer-
sity community completed Experiment 3. All participants self-reported
normal or corrected-to-normal visual acuity and gave both written and
oral informed consent as required by the local Institutional Review
Board. Each participant was tested in a single 2-2.5 h experimental ses-
sion (the exact duration varied across participants depending on the
amount of time needed to set up and calibrate the EEG equipment).

Behavioral tasks. Participants performed six blocks of a spatial recall
task followed by multiple blocks of a DMC task. Both tasks used identical
stimulus and display geometry. During the spatial recall task, partici-
pants were shown a sample display containing a disc (diameter 2.5° from
a viewing distance of 60 cm) rendered in 1 of 12 polar locations (0°-330°
in 30° increments) along the perimeter of an imaginary circle centered at
fixation (radius 7.5°). The sample display was shown for 250 ms and
followed by a 1750 ms blank delay. At the end of each trial, participants
were shown a mouse cursor and instructed to click on the position of the
disc shown in the sample display. Participants were instructed to priori-
tize accuracy over speed, although a 3000 ms response deadline was
imposed. Each trial was followed by a 1500-2200 ms blank interval (ran-
domly sampled from a uniform distribution on each trial). Each block
featured 72 trials (six repetitions per stimulus position) and lasted ~6
min. EEG data recorded during this task were used to train a position-
specific inverted encoding model (see below). Each participant com-
pleted six blocks of this task.

After completing the spatial recall task, participants performed a DMC
task. Participants were shown stimuli in the same 12 positions used dur-
ing the spatial recall task. However, for each participant, we defined a
category boundary such that half of the possible stimulus positions were
assigned membership in Category 1 and the remaining half were assigned
membership in Category 2. For example, the category boundary could be
set such that positions [315, 345, 15, 45, 75, 105] comprised Category 1,
whereas positions [135, 165, 195, 225, 255, 285] comprised Category 2.
The location of the category boundary was randomly and independently
chosen for each participant and held constant throughout the experi-
ment. At the beginning of each trial, a sample disc appeared in 1 of the 12
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possible stimulus locations for 250 ms. After a 1750 ms delay period, a
probe disc was presented. The probe could occupy any of the 11 stimulus
positions not occupied by the sample, and participants were required to
judge whether the position of the probe matched the category of the
sample stimulus via keypress. Participants were instructed to prioritize
accuracy over speed, but a 3000 ms response limit was imposed. Feed-
back (correct vs incorrect) was presented at the end of each trial. Partic-
ipants completed 5 (N = 1) or 8 (N = 7) blocks of 72 trials.

EEG acquisition and preprocessing. Continuous EEG was recorded
from 63 Ag/Ag-Cl~ scalp electrodes via a Brain Products actiCHamp
amplifier. An additional electrode was placed over the right mastoid.
Data were recorded with a right mastoid reference and later rereferenced
to the algebraic mean of the left and right mastoids (10-20 site TP9
served as the left mastoid reference). The horizontal and vertical EOG
was recorded from electrodes placed on the left and right canthi and
above and below the right eye, respectively. All electrode impedances
were kept to <15k(), and recordings were digitized at 1000 Hz. Recorded
data were bandpass filtered from 1 to 50 Hz (third-order zero-phase
forward and reverse Butterworth filters), epoched from a period span-
ning —1000 to 3000 ms relative to the start of each trial, and baseline
corrected from —250 to 0 ms. Muscle and EOG artifacts were removed
from the data using independent components analysis as implemented in
EEGLAB (Delorme and Makeig, 2004). Reconstructions of stimulus lo-
cations were computed from the spatial topography of induced alpha-
band (8—12 Hz) power measured across 17 occipitoparietal electrode
sites: O1, O2, Oz, PO7, PO3, POz, PO4, POS, P7, P5, P3, P1, Pz, P2, P4,
P6, and P8. Inverted encoding model. Experiment 3 relied on a fundamen-
tally different signal than Experiment 2 (induced-alpha-band activity vs
evoked 30 Hz power, respectively). Following earlier research (Kok et al.,
2017; Ester et al., 2018; Nouri and Ester, 2020), we used a variant of the
inverted encoding model approach described in Experiment 2 to com-
pute location channel responses. We first isolated alpha-band activity, by
bandpass filtering the raw EEG time series at each electrode from 8 to 12
Hz (zero-phase forward and reverse filters as implemented by EEGLAB’s
“eegfilt” function), yielding a real valued signal f(¢). The analytic repre-
sentation of f(f) was obtained by applying a Hilbert transformation as
follows:

z(1) = f(1) + if(1)

where i =/ — 1and if(f) = A(t)e'*”). Induced alpha power was com-
puted by extracting and squaring the instantaneous amplitude A(t) of the
analytic signal z(f). We modeled alpha power at each scalp electrode as a
weighted sum of 12 location-selective channels, each with an idealized
tuning curve (a half-wave rectified cosine raised to the 12th power). The
maximum response of each channel was normalized to 1; thus, units of
response are arbitrary. The predicted responses of each channel during
each trial were arranged in a k channel by 7 trials design matrix C. Sepa-
rate design matrices were constructed to track the locations of the blue
and red discs across trials (i.e., we reconstructed the locations of the blue
and red discs separately and then later sorted these reconstructions ac-
cording to cue condition). The relationship between the data and the
predicted channel responses C is given by a GLM of the following form:

B=WC+ N

where B is an m electrode by n trials training data matrix, W is an m
electrode by k channel weight matrix, and N is a matrix of residuals (i.e.,
noise).

To estimate W, we constructed a “training” dataset containing an
equal number of trials from each stimulus location (i.e., 45-360° in 45°
steps) condition. We first identified the location ¢ with the fewest r
repetitions in the full dataset after EOG artifact removal. Next, we con-
structed a training dataset B,,, (m electrodes by # trials) and weight
matrix C,,,, (n trials by k channels) by randomly selecting (without re-
placement) 1:r trials for each of the eight possible stimulus locations
(ignoring cue condition; i.e., the training dataset contained a mixture of
neutral and valid trials). The training dataset was used to compute a
weight for each channel C; via least-squares estimation as follows:
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Wi = Blrnctj;n,l (Ctrn,ictj;n,])71

where C,,,, ; is an n trial row vector containing the predicted responses of
spatial channel 7 during each training trial.

After estimating the weight matrix W, we next estimated a set of spatial
filters V that capture the underlying channel responses while accounting
for correlated variability between electrode sites (i.e., the noise covari-

ance) (Kok et al., 2017) as follows:

W

V= -
Cowry'w,

where X, is the regularized noise covariance matrix for channel i and
estimated as follows:

1
n—1

ISH=H

2:

where 7 is the number of training trials and &; is a matrix of residuals as
follows:

€= By — WiCpn,i

Estimates of ; were obtained by regularization-based shrinkage using an
analytically determined shrinkage parameter (see Blankertz et al., 2011;
Kok et al., 2017). An optimal spatial filter v; was estimated for each
channel C;, yielding an m electrode by k filter matrix V. Next, we con-
structed a “test” dataset B, (m electrodes by # trials) containing data
from all trials not included in the training dataset and estimated trial-by-
trial channel responses C,, (k channels X # trials) from the filter matrix
Vand the test dataset as follows:

Ci = V! By

Trial-by-trial channel responses were interpolated to 360°, circularly
shifted to a common center (0°, by convention), and sorted by category
membership. As in Experiments 1 and 2, reconstructions were shifted
and aligned so that any bias would manifest as a shift toward Category B
(clockwise). Finally, to ensure internal reliability, this entire analysis was
repeated 50 times, and unique (randomly chosen) subsets of trials were
used to define the training and test datasets during each permutation.
The results were then averaged across permutations.

Eye movement control analyses, Experiments 2 and 3. Systematic biases
in eye position can contribute to orientation and location performance
(e.g., Quaxetal., 2019). We did not collect eye position data from Exper-
iment 1 (fMRI). However, different tasks were used to train and test the
encoding model, which can be an effective way of mitigating the effects of
eye movements on stimulus decoding (Mostert et al., 2018). We also
collected EOG data during Experiments 2 and 3 (EEG). To examine
whether eye position varied as a function of stimulus position during
these experiments, we regressed trial-by-trial horizontal EOG recordings
(in wV) onto the orientation of a to-be-categorized stimulus (Experi-
ment 2) or the location of a to-be-categorized disc (Experiment 3). In
both experiments, we identified and excluded trials contaminated by
large horizontal EOG artifacts (=40 wV, which corresponds to a hori-
zontal displacement of 2.5° assuming a voltage threshold of 16 uV per
degree) (Lins et al., 1993), but smaller variations in eye positions, for
example, along the inner stimulus aperture, may have escaped detection.
Using Experiment 2 as an example, we considered two possibilities. First,
participants may have foveated the inner aperture of the stimulus at a
polar location matching its orientation. To illustrate, participants could
foveate the inner aperture of a 45° stimulus at a polar angle of 45° or 225°%
likewise, they could foveate the inner aperture of a 168° stimulus at a
polar angle of 168° or 348°. Second, participants may have foveated the
inner aperture of each stimulus matching the center of the category to
which it belonged. We tested these possibilities by calculating predicted
horizontal eye positions under the assumption that participants foveated
the inner stimulus aperture at locations matching its orientation or the
center of the relevant category. Specifically, we converted records of stim-
ulus orientation (or the center of the category to which the stimulus

Ester et al. @ Categorical Biases in Human Occipitoparietal Cortex

A B

Category “1”

. Category
........ Boundary

Category “2"
3 1.0 1.4
1%2]
5 ' <
Gosctent) - 812
Eg 0.5 iCa(egoryZ E 10
%00 L 08 :
e -84 0 84 -84 0 84

Distance from Category Boundary

Figure 1. Overview of Experiment 1. A, Participants viewed displays containing a circular
aperture of iso-oriented bars. On each trial, the bars were assigned 1 of 15 unique orientations
from 0°to 168°. B, We randomly selected and designated one stimulus orientation as a category
boundary (black dashed line) such that the seven orientations counterclockwise from this value
were assigned to Category 1 (red lines) and the seven orientations clockwise from this value
were assigned to Category 2 (blue lines). , After training, participants rarely miscategorized
orientations. D, Response latencies are significantly longer for oriented exemplars near the
category boundary. RT, Response time. C, D, Shaded regions represent =1 within-participant
SEM.

belonged) to polar format and scaled the resulting estimates by the radius
of the inner stimulus aperture, then regressed these estimates onto
horizontal EOG activity (in wV). If there is a systematic relationship
between eye position and either stimulus orientation or category at
any point during a trial, then this analysis should yield regression
coefficients reliably >0 uV. Identical analyses were used to examine
systematic relationships between horizontal eye position and stimu-
lus location in Experiment 3.

Results

Experiment 1: fMRI

We trained 8 human volunteers to categorize a set of orientations
into two groups, Category 1 and Category 2. The stimulus space
comprised a set of 15 oriented stimuli, spanning 0°-168° in 12°
increments (Fig. 1 A,B). For each participant, we randomly des-
ignated 1 of these 15 orientations as a category boundary such
that the seven orientations anticlockwise to the boundary were
assigned membership in Category 1 and the seven orientations
clockwise to the boundary were assigned membership in Cate-
gory 2. Each participant completed a 1 h training session before
scanning. Each participant’s category boundary was kept con-
stant across all behavioral training and scanning sessions. Many
participants self-reported that they learned the rule delineating
the categories in one or two 5 min blocks of trials. Consequently,
task performance measured during scanning was extremely high,
with errors and slow responses present only for exemplars imme-
diately adjacent to the category boundary (Fig. 1C,D). During
each scanning session, participants performed the category dis-
crimination task and an orientation model estimation task where
they were required to report the identity of a target letter embed-
ded within a rapid stream presented at fixation while a task-
irrelevant grating flickered in the background. Data from this
task were used to compute an unbiased estimate of orientation
selectivity for each voxel in visual areas V1-hV4v/V3A (see
below).

We first examined whether category training increased the
similarity of activation patterns evoked by exemplars from the
same category (i.e., acquired similarity). We tested this by train-
ing a linear decoder (support vector machine) to discriminate
between activation patterns associated with exemplars at the cen-
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Figure 2.  (Category decoding performance. A, We trained classifiers on activation patterns
evoked by exemplars at the center of each category boundary during the orientation mapping
and category discrimination task (blue lines) and then used the trained classifier to predict the
category membership of exemplars adjacent to the category boundary (red lines). B, Decoding
accuracy was significantly higher during the category discrimination task relative to the orien-
tation mapping task (p = 0.01), suggesting that activation patterns evoked by exemplars
adjacent to the category boundary became more similar to activation patterns evoked by ex-
emplars at the center of each category during the categorization task. The absence of robust
decoding performance during the orientation mapping task cannot be attributed to poor signal
ora uniform enhancement of orientation representations by attention, asa decoder trained and
tested on activation patterns associated with exemplars at the center of each category (C)
yielded above-chance decoding during both behavioral tasks (D). Decoding performance was
computed from activation patterns in V1. Error bars indicate =1 SEM.

ter of each category (48° from the boundary) and then used the
trained classifier to predict the category membership of exem-
plars immediately adjacent to the category boundary (*=12°; Fig.
2A). This analysis was performed separately for the orientation
mapping and category discrimination tasks. We reasoned that, if
category training homogenizes activation patterns evoked by
members of the same category, then decoding performance
should be superior during the category discrimination task rela-
tive to the orientation mapping task. This is precisely what we
observed (Fig. 2B). For example, near-boundary decoding per-
formance in V1 was reliably above chance during the category
discrimination task (p < 0.0001, FDR-corrected bootstrap test),
but not during the orientation mapping task when the category
boundary was irrelevant and the oriented stimulus was unat-
tended (p = 0.38). Importantly, the absence of robust decoding
performance during the orientation mapping task cannot be at-
tributed to poor signal, as a decoder trained and tested on activa-
tion patterns associated with exemplars at the center of each
category (Fig. 2C) yielded above-chance decoding during both
behavioral tasks (Fig. 2D; mean 0.58 and 0.69 for the mapping
and discrimination tasks, respectively; p < 0.01, bootstrap test).
Collectively, these results suggest that category training can alter
population-level responses at very early stages of the visual pro-
cessing hierarchy.

To better understand how category training influences orientation-
selective activation patterns in early visual cortical areas, we used
an inverted encoding model (Brouwer and Heeger, 2011) to gen-
erate model-based reconstructed representations of stimulus ori-
entation from these patterns. For each visual area (e.g., V1), we
first modeled voxelwise responses measured during the orienta-
tion mapping task as a weighted sum of idealized orientation
channels, yielding a set of weights that characterize the orienta-
tion selectivity of each voxel (Fig. 3A). In the second phase of the
analysis, we reconstructed trial-by-trial representations of stim-
ulus orientation by combining these weights with the observed
pattern of activation across voxels measured during each trial of
the category discrimination task, resulting in single-trial re-
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Figure 3. Inverted encoding model. 4, In the first phase of the analysis, we estimated an

orientation selectivity profile for each voxel retinotopically organized V1-hV4/V3a using data
from an independent orientation mapping task. Specifically, we modeled the response of each
voxel as a set of 15 hypothetical orientation channels, each with anidealized response function.
B, In the second phase of the analysis, we computed the response of each orientation channel
from the estimated orientation weights and the pattern of responses across voxels measured
during each trial of the category discrimination task. The resulting reconstructed CRF contains a
representation of the stimulus orientation (example; 24°), which we quantified via a curve-
fitting procedure.

constructed CRF that contains a representation of stimulus
orientation for each ROI on each trial (Fig. 3B). Finally, we
sorted trial-by-trial reconstructions according to category
membership such that any bias would manifest as a clockwise
(rightward) shift of the orientation representation toward the
center of Category 2 and quantified biases toward this category
using a curve-fitting analysis (see Materials and Methods).
Stimulus orientation was irrelevant during the orientation
mapping task used for model weight estimation. We therefore
reasoned that voxel-by-voxel responses evoked by each oriented
stimulus would be largely uncontaminated by its category mem-
bership. Indeed, the logic of our analytical approach rests on the
assumption that orientation-selective responses are quantita-
tively different during the orientation mapping and category dis-
crimination tasks: if identical category biases are present in both
tasks, then the orientation weights computed using data from
either task will capture that bias and reconstructed representa-
tions of orientation will not exhibit any category shift. This is
precisely what we observed when we used a cross-validation ap-
proach to reconstruct stimulus representations separately for the
orientation mapping and category discrimination tasks (Fig. 4).
As shown in Figure 5, reconstructed representations of orien-
tation in visual areas V1, V2, and V3 were systematically biased
away from physical stimulus orientation and toward the center of
the appropriate category (shifts of 22.13°, 26.65°, and 34.57°, re-
spectively; p < 0.05, bootstrap test, false discovery rate [FDR]
corrected for multiple comparisons across regions; see Fig. 6 for
separate reconstructions of Category 1 and Category 2 orienta-
tions and Fig. 7 for participant-by-participant reconstructions
plotted by visual area). Similar, though less robust, biases were
also evident in hV4v and V3A (mean shifts of 9.73° and 6.45°,
respectively; p > 0.19). A logistic regression analysis established
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Figure5. Reconstructed representations of orientation in early visual cortex. The vertical bar
at0°indicates the actual stimulus orientation presented on each trial. CRFs from Category 1and
(ategory 2 trials have been arranged and averaged such that any categorical bias would man-
ifest as a clockwise (rightward) shift in the orientation representation toward the center of
Category B. Shaded regions represent == 1 within-participant SEM (see Materials and Methods).
There is a change in scale between visual areas V1-V3 and hV4 —V3A. a.u., Arbitrary units.

that categorical biases in V1-V3 were strongly correlated with
variability in overt category judgments (Fig. 8). That is, trial-by-
trial category judgments were more strongly associated with the
responses of orientation channels near the center of each category
rather than those near the physical orientation of the stimulus.
Importantly, because the location of the boundary separating
Categories 1 and 2 was randomly selected for each participant, it
is unlikely that categorical biases shown in Figure 5 reflect intrin-
sic biases in stimulus selectivity in early visual areas (e.g., due to
oblique effects) (Sun et al., 2013).

The category biases shown in Figure 5 may be the result of an
adaptive process that facilitates task performance by enhancing
the discriminability of physically similar but categorically distinct
stimuli. Consider a hypothetical example where an observer is
tasked with discriminating between two physically similar exem-
plars on opposite sides of a category boundary. Discriminating
between these alternatives should be challenging as each exem-
plar evokes a similar and highly overlapping response pattern.

However, discrimination performance could be improved if the
responses associated with each exemplar are made more separa-
ble via acquired distinctiveness following training (or equiva-
lently, an acquired similarity between exemplars adjacent to the
category boundary and exemplars near the center of each cate-
gory). Similar changes would be less helpful when an observer is
tasked with discriminating between physically and categorically
distinct exemplars, as each exemplar already evokes a dissimilar
and nonoverlapping response. From these examples, a simple
prediction can be derived: categorical biases in reconstructed rep-
resentations of orientation should be largest when participants
are shown exemplars adjacent to the category boundary and pro-
gressively weaker when participants are shown exemplars further
away from the category boundary.

We tested this possibility by sorting stimulus reconstructions
according to the angular distance between stimulus orientation
and the category boundary (Fig. 9). As predicted, reconstructed
representations of orientations adjacent to the category bound-
ary were strongly biased by category membership, with larger
biases for exemplars nearest to the category boundary (mean =
42.62°,24.16°, and 20.12° for exemplars located 12°, 24°, and 36°
from the category boundary, respectively; FDR-corrected boot-
strap, p < 0.0015), whereas reconstructed representations of ori-
entations at the center of each category exhibited no signs of bias
(mean = —3.98° p = 0.79; the direct comparison of biases for
exemplars adjacent to the category boundary and in the center of
each category was also significant; p < 0.01). Moreover, the rela-
tionship between average category bias and distance from the
category boundary was well approximated by a linear trend
(slope = —14.38°/step; r*> = 0.96). Thus, category biases in re-
constructed representation are largest under conditions where
they would facilitate behavioral performance and absent under
conditions where they would not.

Category-selective signals have been identified in multiple
brain areas, including portions of lateral occipital cortex, infero-
temporal cortex, posterior parietal cortex, and lateral PFC
(Freedman et al., 2001; Sigala and Logothetis, 2002; Freedman
and Assad, 2006; Pourtois et al., 2009; Folstein et al., 2013; Mack
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Figure7.

Participant-level stimulus reconstructions. Each panel plots a reconstructed representation of stimulus orientation for a given participant (columns) and visual area (rows). Dashed blue

lines indicate the estimated peak of each reconstruction (obtained via curve-fitting). Ordinate units are arbitrary.

et al., 2013; Davis and Poldrack, 2014). We identified category-
selective information in many of these same regions using a
whole-brain searchlight-based decoding analysis where a classi-
fier was trained to discriminate between exemplars from Cate-
gory 1 and Category 2 (independently of stimulus orientation;
Fig. 10; see Materials and Methods). Next, we used the same
inverted encoding model described above to reconstruct repre-
sentations of stimulus orientation from activation patterns mea-
sured in each area during each of the orientation mapping and
category discrimination tasks (reconstructions were computed
using a leave-one-participant-out cross-validation routine to en-
sure that reconstructions were independent of the decoding anal-
ysis used to define category-selective ROIs). We were able to
reconstruct representations of stimulus orientation in many of
these regions during the category discrimination task, but not

during the orientation mapping task (where stimulus orientation
was task-irrelevant; Fig. 11). This is perhaps unsurprising as rep-
resentations in many mid- to high-order cortical areas are
strongly task-dependent (e.g., Silver et al., 2005). As our analyti-
cal approach requires an independent and unbiased estimate of
each voxel’s orientation selectivity (e.g., during the orientation
mapping task), this meant that we were unable to probe categor-
ical biases in reconstructed representations in these regions.

Experiment 2: EEG

Due to the sluggish nature of the hemodynamic response, the
category biases shown in Figures 5 and 9 could reflect processes
related to decision making or response selection rather than stim-
ulus processing. In a second experiment, we evaluated the tem-
poral dynamics of category biases using EEG. Specifically, we
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Figure 8.  Categorical biases predict choice behavior. Each plot represents a logistic regres-

sion of each orientation channel’s response onto trial-by-trial variability in category judgments.
A positive coefficient indicates a positive relationship between an orientation channel’s re-
sponse and the correct category judgment (i.e., Category B), whereas a negative coefficient
indicates a negative relationship between an orientation channel’s response and correct cate-
gory judgment (i.e., Category A). Red and blue horizontal lines at the top of each plot indicate
orientation channels whose estimated 3 coefficients are significantly <<0 or >0, respectively
(FDR-corrected permutation test; p << 0.05). Shaded regions represent =1 within-participant
SEM.
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Figure9. Category biases scale inversely with distance from the category boundary. 4, The

reconstructions shown in Figure 3 sorted by the absolute angular distance between each exem-
plar and the category boundary. In our case, the 15 orientations were bisected into two groups
of 7, with the remaining orientation serving as the category boundary. Thus, the maximum
absolute angular distance between each orientation category and the category boundary was
48°. Participant-level reconstructions were pooled and averaged across visual areas V1, V2, and
V3 as no differences were observed across these regions. Shaded regions represent =1 within-
participant SEM. B, The amount of bias for exemplars located 1,2, 3, or 4 steps from the category
boundary (quantified via a curve-fitting analysis). Error bars indicate 95% Cls. a.u., Arbitrary
units.

reasoned that, if the biases shown in Figures 5 and 9 reflect pro-
cesses related to decision making, response selection, or motor
planning, then these biases should manifest only during a period
shortly before the participants’ response. Conversely, if the biases
are due to changes in how sensory neural populations encode
features, they should be evident during the early portion of each
trial. To evaluate these alternatives, we recorded EEG while a new
group of 28 volunteers performed variants of the orientation
mapping and categorization tasks used in the fMRI experiment.
On each trial, participants were shown a large annulus of iso-
oriented bars that flickered at 30 Hz (i.e., 16.67 ms on, 16.67 ms
off; Fig. 12A). During the orientation mapping task, participants
detected and reported the identity of a target letter (an X ora’Y)
that appeared in a rapid series of letters over the fixation point.
Identical displays were used during the category discrimination
task, with the caveat that participants were asked to report the
category of the oriented stimulus while ignoring the letter stream.
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Figure 10.  Cortical areas supporting robust decoding of category information. We trained a
linear support vector machine to discriminate between activation patterns associated with
Category A and Category B exemplars (see Searchlight classification analysis). The trained clas-
sifier revealed robust category information in multiple visual, parietal, temporal, and prefrontal
cortical areas, including many regions previously associated with categorization (e.g., posterior
parietal cortex and lateral PFC).
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Figure11.  Stimulus reconstructions in visual, parietal, and frontal cortical areas during the orientation

mapping and categorization tasks. During the orientation mapping task, participants detected and reported
the identity of a target presented in a stream of letters at fixation. During the categorization experiment,
participants categorized stimulus orientation into two discrete groups. Shaded regions represent 1 within-
participant SEM. IPL, Inferior parietal lobule; IPS, intraparietal sulcus; sPCS, superior precentral sulcus; IT, in-
ferotemporal cortex, IFG, inferior frontal gyrus; a.u., arbitrary units.

The 30 Hz flicker of the oriented stimulus elicits a standing
wave of frequency-specific sensory activity known as a steady-
state visually evoked potential (SSVEP; Fig. 12B) (Vialatte et al.,
2010). The coarse spatial resolution of EEG precludes precise
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Figure 12.  Summary of Experiment 2. A, Participants viewed displays containing an aper-
ture of iso-oriented bars flickering at 30 Hz. B, The 30 Hz flicker entrained a frequency-specific
response known as a SSVEP. €, Evoked 30 Hz power was largest over occipitoparietal electrode
sites. We computed stimulus reconstructions (Fig. 7) using the 32 scalp electrodes with the
highest power. Scale bar: the proportion of participants (of 27) for which each electrode site was
ranked in the top 32 of all 128 scalp electrodes. D, E, Participants categorized stimuli with a high
degree of accuracy; incorrect and slow responses were observed only for exemplars adjacent to
a category boundary. Shaded regions represent =1 within-participant SEM.
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Figure 13.  Category hiases emerge shortly after stimulus onset. 4, Time-resolved recon-
struction of stimulus orientation. Dashed vertical lines at time 0.0 and 3.0 s indicate stimulus
onset and offset, respectively. B, Average CRF during the first 250 ms of each trial. The recon-
structed representation exhibits a robust category bias (p < 0.01; bootstrap test). a.u., Arbi-
trary units.
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Figure 14. Stimulus and category information is absent in pretrial EEG activity. Time-
averaged reconstruction computed over an interval spanning — 250 to 0 ms relative to stimulus
onset. The center of the reconstruction was statistically indistinguishable from 0° (p = 0.234;
bootstrap test).

statements about the cortical source(s) of these signals (e.g., V1,
V2, etc.). However, to focus on visual areas (rather than parietal
or frontal areas), we deliberately entrained stimulus-locked ac-
tivity at a relatively high frequency (30 Hz). Our approach was
based on the logic that coupled oscillators can only be entrained
at high frequencies within small local networks, whereas larger or
more distributed networks can only be entrained at lower fre-
quencies due to conduction delays (Breakspear et al., 2010). In-
deed, a topographic analysis showed that evoked 30 Hz activity
was strongest over a localized region of occipitoparietal electrode
sites (Fig. 12C). As in Experiment 1, participants learned to cat-
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egorize stimuli with a high degree of accuracy, with errors and
slow responses present only for exemplars adjacent to a category
boundary (Fig. 12D, E).

We computed the power and phase of the 30 Hz SSVEP re-
sponse across each 3000 ms trial and then used these values to
reconstruct a time-resolved representation of stimulus orienta-
tion (Garcia et al., 2013). Our analysis procedure followed that
used in Experiment 1: In the first phase of the analysis, we rank-
ordered scalp electrodes by 30 Hz power (based on a discrete
Fourier transform spanning the 3000 ms trial epoch, averaged
across all trials of both the orientation mapping and category
discrimination tasks). Responses measured during the orienta-
tion mapping task were used to estimate a set of orientation
weights for the 32 electrodes with the strongest SSVEP signals
(i.e., those with the highest 30 Hz power; see Fig. 12C) at each
time point. In the second phase of the analysis, we used these time
point-specific weights and corresponding responses measured
during each trial of the category discrimination task across all
electrodes to compute a time-resolved representation of stimulus
orientation (Fig. 13A,B). We reasoned that, if the categorical
biases shown in Figures 5 and 9 reflect processes related to deci-
sion making or response selection, then they should emerge grad-
ually over the course of each trial. Conversely, if the categorical
biases reflect changes in sensory processing, then they should
manifest shortly after stimulus onset. To test this possibility, we
computed a temporally averaged stimulus reconstruction over an
interval spanning 0—-250 ms after stimulus onset (Fig. 14B). A
robust category bias was observed (mean 23.35% p = 0.014; boot-
strap test), suggesting that the intent to categorize a stimulus
modulates how neural populations in early visual areas respond
to incoming sensory signals.

Importantly, the bandpass filter used to isolate 30 Hz activity
will distort temporal characteristics of the raw EEG signal by
some amount. We estimated the extent of this distortion by gen-
erating a 3 s, 30 Hz sinusoid with unit amplitude (plus 1 s of
presignal and postsignal zero padding) and running it through
the same filters used in our analysis path. We then computed the
time at which the filtered signal reach 25% of maximum. For an
instantaneous filter, this should occur at exactly 1 s (due to the
presignal and postsignal zero padding). We estimated a signal
onset of ~877 ms, or 123 ms before the start of the signal. There-
fore, if reconstruction amplitude is >0 at time ¢, then we can
conclude that the pattern of scalp activity used to generate the
stimulus reconstruction contained reliable orientation informa-
tion at time ¢ = 125 ms. The same logic applies to estimates of
reconstruction bias as the reconstructions are based on data fil-
tered using the same parameters. Importantly, we also verified
that there was no categorical bias in stimulus reconstructions
before stimulus onset (Fig. 14), nor were categorical biases pres-
ent when we reconstructed stimulus representations using data
from the orientation mapping and category discrimination tasks
separately (Fig. 15).

Ruling out contributions from eye movements

We identified and removed trials contaminated by large EOG
artifacts (blinks and eye movements =2°). However, small and
consistent eye movement patterns could nevertheless contribute
to the orientation reconstructions reported here. We examined
this possibility by testing whether participants foveated the inner
aperture of the stimulus at polar locations matching its orienta-
tion (Fig. 16A) or at polar locations matching the center of the
appropriate category (A vs B; Fig. 16B; for details, see Materials
and Methods). No systematic differences in eye position were
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Figure15.  Reconstructions of stimulus orientation during the orientation mapping task (A)
and the category discrimination task (B) during Experiment 2. Vertical dashed lines at time 0.0
and 3.0 indicate the start and end of each trial, respectively. Reconstructions were computed
using a leave-one-run-out cross validation approach where data from N — 1 runs were used to
estimate channel weights and data from the remaining run were used to estimate channel
responses. This procedure was iterated until all runs had been used to estimate channel re-
sponses, and the results were averaged over permutations. Units of response are arbitrary.

observed as a function of stimulus orientation or category mem-
bership (Fig. 16), suggesting that eye movements were not a ma-
jor contributor to orientation-specific reconstructions.

Experiment 3: EEG
The results of Experiments 1 and 2 suggest that category learning
can bias stimulus-specific representations encoded by occipito-
parietal cortical areas. However, an alternative explanation is that
the biases shown in Figures 5, 9, and 13 reflect mechanisms of
response selection or decision making independent of categorical
processing. Experiment 3 examined this possibility by examining
categorical biases in stimulus-specific memory representations
while participants performed a DMC task. A schematic of the task
is shown in Figure 17A, B. At the beginning of each trial a sample
disc rendered in one of 12 possible stimulus locations (15-345°
polar angle in 30° along the perimeter of an imaginary circle).
Half of the disc positions were assigned membership in Category
1, while the remaining half of disc positions were assigned mem-
bership in Category 2 (Fig. 17A). Participants remembered the
position of the sample disc over a blank delay, then judged
whether a probe disc was rendered in a position matching the
category of the sample disc. The location of the category bound-
ary was randomly determined for each participant, and response
feedback (correct vs incorrect) was provided after every trial. Like
Experiment 2, participants were not trained on the DMC task
before testing and learned to associate specific positions with
specific categories through feedback. Before completing the
DMC task, participants also completed a spatial working mem-
ory task. Display and stimulus geometry were identical during the
spatial memory task and the DMC task. On each trial a sample
disc was rendered in one of the same 12 positions used during the
DMC task. After a short delay, participants recalled the location
of the sample disc via mouse click.

Following earlier work (Samaha et al., 2016; e.g., Foster et al.,
2016; Ester et al., 2018; Nouri and Ester, 2020), we used spatio-
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Figure 16.  No systematic biases in eye position during orientation categorization (Experi-
ment 2). We regressed trial-by-trial records of stimulus orientation () or category (B) onto
horizontal EOG activity. Thus, positive coefficients reflect a systematic relationship between
stimulus orientation (or category) and eye position. No such biases were observed. Black vertical
dashed lines at 0.0 and 3.0 indicate the start and end of each trial, respectively. Shaded regions
represent the 95% within-participant Cl of the mean.

temporal patterns of induced alpha-band (8 —12 Hz) activity over
occipitoparietal electrode sites to track the contents of spatial
working memory during the recall and DMC tasks. Specifically,
we modeled sample-by-sample estimates of alpha band activity
recorded during the spatial recall task as a combination of 12
location filters, each with an idealized tuning curve (a cosine
raised to the 12 ™ power). The result of this step is a set of weights
that characterizes the location preferences of each scalp electrode.
Next, we used these weights and spatiotemporal patterns of
alpha-band activity recorded during the DMC task to compute
an expected response for each location filter, yielding a time-
resolved estimate of stimulus position. Trial-by-trial response
functions were shifted to a common center (0° by convention), av-
eraged, and arranged such that any category bias would manifest as a
clockwise or positive shift toward the center of Category 2.

As expected, a robust category bias was observed during the
delay period of the DMC task (Fig. 17C), though unlike Experi-
ment 2 the bias seemed to emerge gradually over the course of the
delay period. To quantify this bias, we averaged channel re-
sponses from period 0.25 to 2.0 s after onset of the sample display
and fit the resulting function with an exponentiated cosine (see
Quantification of bias in orientation representations). Mean re-
construction centers were reliably >0° (mean 10.55°% p = 0.002,
bootstrap test), indicating a robust bias toward the center of the
relevant category. Importantly, this bias cannot be explained by
mechanisms associated with decision making and response selec-
tion: participants could not plan or implement a response until
the probe stimulus was presented at the end of the delay period.
This result further suggests that the results of Experiments 1 and
2 cannot be wholly explained by mechanisms of response selec-
tion or bias.
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Figure 17.  Design and results of Experiment 3. 4, Possible stimulus locations. The orienta-

tion of the category boundary (red dashed line) was randomly determined for each participant
(example shown). B, DMC task. Participants remembered the position of a sample disc over a
blank delay and then judged whether the location of a probe disc was drawn from the same
location category or a different location category. In this example, the categories are defined by
the boundary shown in A. €, Location-specific reconstructions computed during the DMC task.
Vertical dashed lines at 0.0 and 2.0 s indicate the onset of the sample and probe epochs,
respectively. Participants could not prepare a response until the onset of the probe display, yet
arobust category bias was observed during the delay period. This suggests that category biases
observed in Experiments 1and 2 are not solely due to mechanisms of response selection.

Assessing contributions from eye movements

We identified and removed EOG artifacts from the data via inde-
pendent components analysis. However, small and consistent eye
movement patterns opaque to independent components analysis
could nevertheless contribute to the location reconstructions re-
ported here. We examined this possibility by regressing time-
resolved estimates of horizontal EOG activity onto remembered
stimulus locations. As shown in Figure 18, the regression coeffi-
cients linking eye position with remembered locations were in-
distinguishable from 0 for the duration of each trial, suggesting
that eye movements were not a major determinant of location
reconstructions.

Discussion

Our findings suggest that category learning shapes information
processing at the earliest stages of the visual system. The results of
Experiment 1 showed that representations of a to-be-categorized
stimulus encoded by population-level activity in early visual cor-
tical areas were systematically biased by their category member-
ship. These biases were correlated with overt category judgments
and were largest for exemplars adjacent to the category boundary.
The results of Experiments 2 and 3 demonstrate that similar bi-
ases are present in orientation- and location-specific reconstruc-
tions computed by human scalp EEG data, and further suggest
that our findings cannot be explained by response bias, motor
planning, or eye movements.

The categorical biases reported here are strongly task-dependent,
and therefore must reflect changes in responses caused by tran-
sient top-down factors rather than long-term changes in feature
or location selectivity. However, the effects of these top-down
modulations are fundamentally different from task-dependent
modulations reported elsewhere. In one example, Ester et al.
(2015) asked participants to attend the orientation or luminance
of a peripheral grating and found both multiplicative and addi-
tive enhancements of orientation-specific reconstructions during
the attend orientation condition relative to the attend luminance
condition, but no evidence for a shift like the one reported here.
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Figure 18.  No systematic biases in eye position during location categorization (Experiment
3). We regressed trial-by-trial records of stimulus location (A) or category (B) onto horizontal
EOG activity. Thus, positive coefficients reflect a systematic relationship between stimulus ori-
entation (or category) and eye position. No such biases were observed. Black vertical dashed
lines at 0.0 and 3.0 indicate the start and end of each trial. Shaded regions represent the 95%
within-participant Cl of the mean.

In a different study, Byers and Serences (2014) examined changes
in orientation-specific reconstructions before and after partici-
pants underwent extensive training (10 1 h sessions) in a chal-
lenging orientation discrimination task. We observed changes in
the amplitude (i.e., signal-to-noise ratio) of orientation-specific
reconstructions following training, but no evidence for a shift like
the one reported in the current study. In other studies, Scolari et
al. (2012) examined changes in orientation-specific reconstruc-
tions when participants performed fine-grained and coarse-
grained orientation discrimination tasks. Participants viewed
two oriented gratings in sequence and judged whether they were
identical. During one experiment participants were cued to how
the second grating might differ from the first (clockwise vs coun-
terclockwise rotation), whereas in a second experiment they were
not. During the fine-grained discrimination task, the authors
observed a modest shift in orientation-specific reconstructions
toward “off-target” neural populations that maximally discrimi-
nated between two oriented stimuli, but only when participants
were cued to expect a clockwise or counterclockwise rotation.
While this type of modulation is desirable while performing a
fine-discrimination task, it is qualitatively different from the
shifts we report in the current experiment, as participants have no
way of anticipating what orientation will be presented on each
trial, nor the difference between that orientation and the category
boundary. Moreover, the shifts reported by Scolari et al. (2012)
during fine discriminations were relatively modest, at most few
degrees. We report an opposite pattern of findings, where shifts
are largest for oriented exemplars immediately adjacent to the
category boundary. Thus, while other studies have documented
task-dependent changes in orientation-specific reconstructions,
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those studies have failed to reveal shifts in reconstructed repre-
sentations (Byers and Serences, 2014; Ester et al., 2015) or have
revealed modest shifts that follow different patterns from those
reported here (Scolari et al., 2012).

Several mechanisms may be responsible for our findings. One
possibility is that the orientation preferences of single units (or
populations of units) are systematically shifted toward the center
of each category during the category discrimination task, much in
the same way that neurons in the rodent auditory system exhibit
emergent selectivity for categorically different stimuli (e.g., Xin et
al., 2019) or in the same way that the spectral preferences of
neural populations are biased by feature-based attention (David
etal., 2008; Cukur et al., 2013). These shifts are relatively small at
the single-unit level but could be amplified by read-out mecha-
nisms that integrate the responses of large neural populations. A
second possibility is that participants strategically apply gain to
neural populations that maximally discriminate between to-be-
categorized exemplars during the category discrimination task.
Here there are no changes in the spectral preferences of single
units, but the responses of neurons that respond to stimuli near
the category boundary are amplified. These alternatives are not
mutually exclusive; nor is this an exhaustive list. Our data cannot
resolve these possibilities. For example, several different patterns
of single-unit gain changes and/or tuning shifts can produce
identical responses in a single fMRI voxel, and different patterns
of single-voxel modulation could produce categorical biases in
multivariate stimulus reconstructions (for a detailed discussion
of this issue, see, e.g., Sprague et al., 2018). Ultimately, targeted
experiments that combine noninvasive measurements of brain
activity with careful psychophysical measurements and detailed
model simulations will be needed to conclusively identify the
mechanisms responsible for the category biases we have reported
here.

Our findings appear to conflict with results from nonhuman
primate research, which suggests that sensory cortical areas do
not encode categorical information. However, there is reason to
suspect that mechanisms of category learning might be qualita-
tively different in human and nonhuman primates. For example,
our participants learned to categorize stimuli based on perfor-
mance feedback after ~10 min of training. In contrast, macaque
monkeys typically require 6 months or more of training using a
similar feedback scheme to reach a similar level of performance,
and this extensive amount of training may influence how neural
circuits code information (Birman and Gardner, 2016; e.g., It-
thipuripat et al., 2017). Moreover, there is growing recognition
that the contribution(s) of sensory cortical areas to performance
on a visual task are highly susceptible to recent history and train-
ing effects (Chen et al., 2016; Itthipuripat et al., 2017; Liu and
Pack, 2017). In one example (Liu and Pack, 2017), extensive
training was associated with a functional substitution of human
visual area V3a for MT * in discriminating noisy motion patches.
Thus, training effects may help explain why previous electrophys-
iological experiments have found category-selective responses in
association but not sensory cortical areas.

Studies of categorization in nonhuman primates have typi-
cally used variants of a delayed match to category task, where
monkeys are shown a sequence of two exemplars separated by a
blank delay interval and asked to report whether the category of
the second exemplar matches the category of the first exemplar.
The advantage of this task is that it allows experimenters to de-
couple category-selective signals from activity related to decision
making, response preparation, and response execution. How-
ever, this same advantage also precludes examinations of whether
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and/or how top-down category-selective signals interact with
bottom-up stimulus-specific signals. We made no effort to de-
couple category-selective and decision-related signals in Experi-
ments 1 and 2; thus, the category biases observed in those studies
could reflect mechanisms of decision making, response selection,
or motor planning. The results of Experiment 3 conflict with this
interpretation by demonstrating that robust category biases are
present during the memory period of a DMC task (Freedman and
Assad, 2006).

Previous studies have identified cortical modules selective for
faces (Kanwisher et al., 1997), locations (Epstein and Kanwisher,
1998), actions (Astafiev et al., 2004; Huth et al., 2012), bodies
(Downing et al., 2001), animacy (Konkle and Caramazza, 2013),
and size (Konkle and Caramazza, 2013). Other category distinc-
tions (e.g., tools vs cars) lack specialized processing modules but
can be decoded from multivoxel patterns in multiple occipito-
temporal regions (e.g., Folstein et al., 2013). Our findings com-
plement these studies by demonstrating that learning a novel and
arbitrary category rule is correlated with rapid and reversible
changes in stimulus-specific information processing at even ear-
lier stages of the cortical visual processing hierarchy, including V1
(see also Brouwer and Heeger, 2009, 2013). Category-dependent
changes in early visual areas may contribute to more complex
forms of category selectivity exhibited by upstream cortical areas,
including portions of lateral occipital and inferotemporal cortex.
This possibility awaits further scrutiny.

In conclusion, we have shown that learning a novel and arbi-
trary category rule based on a simple visual feature (orientation
or location) correlates with rapid and reversible changes in sen-
sory and mnemonic representations encoded by regions in early
occipitoparietal cortex. These changes correlate with partici-
pants’ overt category judgments, are largest for exemplars adja-
cent to a category boundary, and cannot be explained by decision
making or motor preparation. Collectively, these results provide
novel and important evidence suggesting that category learning
induces rapid-yet-reversable changes in information processing
at early stages of the cortical visual processing hierarchy.
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